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Motivation and Objectives
•  Light from a variety of sources is incident on the lunar 

surface within “permanently shadowed regions” (PSRs) 
near the poles that are never directly exposed to sunlight 

•  We survey predictions for these light sources that cover a 
broad range of wavelengths from the infra-red to the far-
UV, where most of the incident energy appears 

•  Implications for: 

-  Surface temperature of the lunar regolith 

-  Stability of volatiles and surface chemistry 

-  Suitability of the Moon as a platform for 
astronomical observatories 



Sources of PSR Illumination
1.  Sunlight scattered from directly illuminated surface 

2.  Earthshine (direct and scattered)  

3.  Diffuse broadband galactic background 

4.  Lyman-alpha from interplanetary hydrogen 

5.  Zodiacal light from inner solar system dust 

6.  Emission lines from exospheric species (Na and K) 

7.  Sunlight scattered by exospheric dust: 

•  Tenuous dust clouds from possible natural transport 

•  Denser dust clouds from either a local LCROSS-
scale impact or kicked-up by exploration and/or in-
situ resource utilization (ISRU) activities 



Surface-scattered Sunlight into PSRs
Paige et al. (2010) had direct and 
scattered sunlight, as well as direct 
Earthshine, in their thermal model.  

It did a remarkable job of matching the 
LRO Diviner observations – although 
there were some discrepancies. 

Assumed an internal heat flow of 16 
mW m−2 based on Apollo data. 

Mazarico et al. (2011) estimated 
scattered sunlight at selected points: 

Flux ranged from 0 to ~7,000 mW m−2 

Annual averages ~10 to 1,500 mW m−2 

Conceivable that some areas do not 
see any scattered sunlight. 
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Polar Crater – Illumination Geometry 
•  Rotate each source to (Φ,ZA) coordinates: Isource (Φ,ZA)  [W cm−2 sr−1 nm−1] 

•  UV-NIR wavelength integration to get broadband radiance B (Φ,ZA)  [W cm−2 sr−1] 

•  Solid angle integration ∫ B(Φ,ZA) cos(ZA) dΩ gives irradiance [W cm−2] at center 



Source:  
Two-color maps in S10 
flux units, from Helios 1, 2, 
and Pioneer 10  
(Leinert et al., 1998) 
 
1 S10 = 1, 10th mag solar-
type star per deg2 
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Interplanetary Sources 

Lyman-alpha Zodiacal Light 

Source: Helios 1 (Leinert et al., 1998), 
rocket photometry (Pitz et al. 1979) 

Source: SOHO Solar wind anisotropies 
(SWAN) model at solar maximum  
[Courtesy: Wayne Pryor] 
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Radiance: Sodium and Potassium 
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Sources: Potter & Morgan, Science, 1988; 
Mendillo et al., GRL, 1991; Icarus, 1999 
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Exospheric Dust 

Scattering code: 

•  Mie-scattering simulation code for lunar exospheric dust.  
 
•  Simple, 1D exponential dust distributions defined by 

surface concentration n0 and scale height H 

•  Solar irradiance model from Solar Radiation and Climate 
Experiment/SORCE (U. Colorado, LASP)  

•  Dust optical constants from Shkuratov et al. (1999) 

•  Crater-wall shadowing 



Exospheric Dust - Natural 

LRO/LAMP, Clementine Upper-limit 
(rgrain= 0.1 µm, n0=10-5 cm-3, H= 10 km) 

W cm-2 sr-1	
  
x 10-10 

Apollo 15 bright model 
(rgrain= 0.1 µm, n0=0.08 cm-3, H= 5 km) 

(Feldman et al. 2014; Glenar et al. submitted) (McCoy 1976; Glenar et al. 2011) 
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Exospheric Dust – Lunar Landing 
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•  Elapsed time = 90 sec 
•  Grain radius = 0.4 µm 
•  n0= 1.3 x 10-7 cm-3 

•  H= 13 km 
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Irradiance Comparison



Thermal Equilibrium Comparison



Summary and Conclusions
•  As anticipated, weak irradiance sources (~10−5 W m−2) have a 

negligible effect on thermal balance in PSRs: 
- Interplanetary Lyman-alpha; Diffuse galactic background 
 - Zodiacal light; Lunar Sodium (D-lines) and Potassium 
 - Exospheric dust based on LAMP and Clementine upper limits 

•  In absence of surface-scattered sunlight, an Apollo 15-like dust 
population would warm the coldest PSRs by ≈2–3 K 

•  The influence of the exospheric dust irradiance decreases with 
temperature due to the T4 dependence 

•  Unlikely to significantly effect the thermal stability of water 
ice that is either on the surface (≈101 K) or buried (≈145 K) 

•  Apollo LM landing estimate is a lower limit, but indicates that 
nearby exploration activity will not thermally disturb PSRs 



Backup 



Indirect Earthshine 
Crater Wall Reflectance Viewed at 
Crater Center 
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•  Earth considered a Lambert point 
source (for now), with (AL=0.4). 

•  Wavelength integration from near-UV 
(350 nm) to near-IR (2400 nm) 

 
•  Crater wall reflectance: Hapke BRDF 

(Hapke, 1993). w(λ) adjusted to 
match reflectance of mixed Apollo 
soils (Gougen, 2012).  

Model assumptions: 

High surface brightness, but small solid 
angle; hence moderate irradiance at 
“detector”. 



Exospheric Dust 
Case III:    “LCROSS scale” Impact Simulation 

 
Elapsed time from impact:  
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•  Impact beyond crater rim (x= 20 km) 

•  Brightness maps of sunlight scattering 
( λ=550 nm) from ground-based 
imaging (Stryker et al. 2013).   

•  Broadband computations using lunar 
spectral reflectance (Apollo “mix”, 
USGS, www.moon-cal.org) 


